Detecting and correcting sensor drifts in long-term weather data
نویسندگان
چکیده
منابع مشابه
Detecting and correcting sensor drifts in long-term weather data.
Quality control of long-term monitoring data of thousands and millions of individual records as present in meteorological data is cumbersome. In such data series, sensor drifts, stalled values, and scale shifts may occur and potentially result in flawed conclusions if not noticed and handled properly. However, there is no established standard procedure to perform quality control of high-frequen...
متن کاملthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولIrrigation Analysis Based on Long-Term Weather Data
Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers ...
متن کاملDetecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor
Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...
متن کاملCategorizing Concepts for Detecting Drifts in Stream
Mining evolving data streams for concept drifts has gained importance in applications like customer behavior analysis, network intrusion detection, credit card fraud detection. Several approaches have been proposed for detection of concept drifts in the context of supervised learning in data streams. Recently, researchers have been looking into the problem of identifying concept drifts in unlab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmental Monitoring and Assessment
سال: 2012
ISSN: 0167-6369,1573-2959
DOI: 10.1007/s10661-012-2831-6